### PLANNED THEORY SYLLABUS COVERAGE

| GP<br>Hamirpur<br>Syllabus<br>COVERAGE |            | Department: Elec                                   | trical Engg. Subject: ELECTRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAL AND ELEC             | TRONICS MEASUR                     | EMENT   |  |
|----------------------------------------|------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|---------|--|
|                                        |            | Sem. & Branch: 3rd & Elect. Engg Duration : 3years |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                    |         |  |
|                                        |            | Total Periods: Theory:56 Practical:28              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                    |         |  |
| Sr<br>No                               | Period Nos | Торіс                                              | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Instruction<br>Reference | Additional<br>Study<br>Becommended | Remarks |  |
| 1                                      | 12(1-12)   | Fundamentals of<br>Measurements                    | Measurement: Significance, units, fundamental<br>quantities and standards Classification of Instrument<br>Systems: Null and deflection type instruments Absolute<br>and secondary instruments Analog and digital<br>instruments Static and dynamic characteristics, types of<br>errors, Calibration: need and procedure Classification<br>of measuring instruments: indicating, recording and<br>integrating instruments. Essential requirements of an<br>indicating instruments.                                          |                          |                                    |         |  |
| 2                                      | 12(13-24)  | Measurement of<br>voltage and current              | DC Ammeter: Basic, Multi range, Universal shunt,<br>DC Voltmeter: Basic, Multi-range, concept of loading<br>effect and sensitivity AC voltmeter: Rectifier type (half<br>wave and full wave), CT and PT: construction, working<br>and applications. Clamp-on meter.                                                                                                                                                                                                                                                        |                          |                                    |         |  |
| 3                                      | 10(25-34)  | Measurement of<br>Electric Power                   | Analog meters: Permanent magnet moving coil<br>(PMMC) and Permanent magnet moving iron (PMMI)<br>meter, their construction, working, salient features,<br>merits and demerits. Dynamometer type wattmeter:<br>Construction and working Range: Multiplying factor<br>and extension of range using CT and PT Errors and<br>compensations. Active and reactive power<br>measurement: One, two and three wattmeter method.<br>Effect of Power factor on wattmeter reading in two<br>wattmeter method. Maximum Demand indicator |                          |                                    |         |  |

| Sr | Period Nos Topic | Details | Instruction | Additional | Remarks |
|----|------------------|---------|-------------|------------|---------|
|----|------------------|---------|-------------|------------|---------|

5

| No |           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference | Study<br>Recommended |  |
|----|-----------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--|
| 4  | 8(35-42)  | Measurement of<br>Electric Energy                         | Single and three phase electronic energy meter:<br>Constructional features and working principle, Errors<br>and their compensations.<br>Calibration of single phase electronic energy meter<br>using direct loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                      |  |
| 5  | 14(43-56) | Circuit Parameter<br>Measurement, CRO<br>and Other Meters | Measurement of resistance: Low resistance: Kelvin's<br>double bridge, Medium Resistance: Voltmeter and<br>ammeter method, High resistance: Megger and Ohm<br>meter: Series and shunt Measurement of inductance<br>using Anderson Bridge (no derivation and phasor<br>diagram) ,Measurement of capacitance using Schering<br>bridge (no derivation and phasor diagram)<br>Single beam/single trace CRO, Digital storage<br>Oscilloscope: Basic block diagram, working, Cathode<br>ray tube, electrostatic deflection, vertical amplifier, time<br>base generator, horizontal amplifier, measurement of<br>voltage/ amplitude/ time period/ frequency/ phase angle<br>delay line, specifications.<br>Other meters: Earth tester, Digital Multi-meter; L-C-R<br>meter, Frequency meter (ferromagnetic and Weston<br>type), Phase sequence indicator, power factor meter<br>(single phase and three phase dynamometer type),<br>Synchroscope, Tri-vector meter, Signal generator need,<br>working and basic block diagram. Function generator:<br>need, working and basic block diagram, function of<br>symmetry. |           |                      |  |

Beyanka Vapoor DATE.

| APPROVED | SIGN HOD/OIC |
|----------|--------------|
| Е        | And          |

### Government Polytechnic Hamirpur Lecture Planning (Theory)

Semester:

3rd Aug 24 - Dec 24 Session.

| Sr.<br>No. | No. of<br>Lectu | Chapter/ Unit<br>Description                                              | Detail of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference<br>Resources | Re<br>m |
|------------|-----------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| 1.         | 1-12            | Thermal Power<br>Plants                                                   | Coal, Gas/ Diesel and Nuclear-based Layout and working of a typical<br>thermal power plant with steam turbines and electric generators.<br>Properties of conventional fuels used in the energy conversion<br>equipment used in thermal power plants: Coal, Gas/diesel, nuclear<br>fuels-fusion and fission action. Safe Practices and working of various<br>thermal power plants: coal-based, gas-based, diesel-based, and<br>nuclear based. Functions of the following types of thermal power<br>plants and their major auxiliaries: Coal fired boilers, fire tube and<br>water tube. Gas/diesel based combustion engines. Types of nuclear<br>reactors: Disposal of nuclear waste and nuclear shielding. Thermal<br>power plants in India | R1,R2,R3               |         |
| 2.         | 13-22           | Large and Micro-<br>Hydro Power<br>Plants                                 | Energy conversion process of hydro power plant. Classification of<br>hydro power plant: High, medium and low head. Construction and<br>working of hydro turbines used in different types of hydro power plant:<br>a. High head – Pelton turbine b. Medium head – Francis turbine c.<br>Low head – Kaplan turbine. Safe Practices for hydro power plants.<br>Different types of micro- hydro turbines for different heads: Pelton,<br>Francis and Kaplan turbines, Locations of these different types of<br>large and micro-hydro power plants in Himachal. Potential locations<br>of micro-hydro power plants in Himachal                                                                                                                   | -do-                   |         |
| 3.         | 23-34           | Solar and<br>Biomass based<br>Power Plants                                | Solar Map of India: Global solar power radiation. Solar Power<br>Technology a. Concentrated Solar Power (CSP) plants, construction<br>and working of: Power Tower, Parabolic Trough, Parabolic Dish,<br>Fresnel Reflectors b. Solar Photovoltaic (PV) power plant: layout,<br>construction, working. Biomass-based Power Plants c. Layout of a<br>Bio-chemical based (e.g. biogas) power plant: d. Layout of a Thermo-<br>chemical based (e.g. Municipal waste) power plant e. Layout of an<br>Agro-chemical based (e.g. bio-diesel) power plant, Features of the<br>solid, liquid and gas biomasses as fuel for biomass power plant.                                                                                                       | -do-                   |         |
| 4.         | 35-42           | Wind Power<br>Plants Wind Map<br>of India                                 | Wind power density in watts per square meter Layout of Horizontal<br>axis large wind power plant: Geared wind power plant. Direct-drive<br>wind power plant. Salient Features of electric generators used in<br>large wind power plants: Constant Speed Electric Generators:<br>Squirrel Cage Induction Generators (SCIG), Wound Rotor Induction<br>Generator (WRIG) Variable Speed Electric Generators: Doubly-fed<br>induction generator (DFIG), wound rotor synchronous generator<br>(WRSG), permanent magnet synchronous generator (PMSG)                                                                                                                                                                                               | -do-                   |         |
| 5.         | 43-56           | Economics of<br>Power<br>Generation and<br>Interconnected<br>Power System | Related terms: connected load, firm power, cold reserve, hot reserve,<br>spinning reserve. Base load and peak load plants; Load curve, load<br>duration curve, integrated duration curve Cost of generation: Average<br>demand, maximum demand, demand factor, plant capacity factor,<br>plant use factor, diversity factor, load factor and plant load factor.<br>Choice of size and number of generator units, combined operation of<br>power station. Causes, Impact and reasons of Grid system fault:<br>State grid, national grid, brown-out and black-out; sample blackouts<br>at national and international level.                                                                                                                   | -do-                   |         |

Parous 118/24 Signature of Teacher with Date



Branch : Electrical Engg.

#### Reference Resource:

R1:Nag. P. K.Power Plant Engineering, McGraw Hill, New Delhi,
R2. Gupta, B.R., Generation of Electrical Energy, S. Chand& Co. New Delhi,
R3. Gupta, J.B. A Course in Electrical Power– S. K Kataria and Sons, New Delhi. 2014

# Govt. Polytechnic Hamirpur (H.P.) Lesson Planning (Theory)

Branch : ELECTRICAL ENGG Subject : ELECTRICAL CIRCUITS Teacher: ARCHIT BHARTI Semester: 3rd Session: AUG-2024 Class Room: L1

| S.N<br>o. | No.<br>of<br>Lectu<br>res | Chapter/ Unit<br>Description                                  | Detail of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                              | Refere<br>nce<br>Resour<br>ces | Re<br>mar<br>ks |
|-----------|---------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| 1         | 12                        | Single Phase<br>A.C Series<br>Circuits                        | Generation of alternating voltage, Phasor<br>representation of sinusoidal quantities R, L, C circuit<br>elements its voltage and current response<br>R-L, R-C, R-L-C combination of A.C series circuit,<br>impedance, reactance, impedance triangle, Power<br>factor, active power, reactive power, apparent<br>power, power triangle and vector diagram,<br>Resonance, Bandwidth, Quality factor and voltage<br>magnification in series R-L, R-C, RL-C circuit | R1,R2                          |                 |
| 2         | 13                        | Single Phase<br>A.C Parallel<br>Circuits                      | R-L, R-C and R-L-C parallel combination of A.C.<br>circuits. Impedance, reactance, phasor diagram,<br>impedance triangle<br>R-L, R-C, R-L-C parallel A.C. circuits power factor,<br>active power, apparent power, reactive power,<br>power triangle<br>Resonance in parallel R-L, R-C, R-L-C circuit,<br>Bandwidth, Quality factor and voltage magnification                                                                                                    | R1,R2                          | 1               |
| 3         | 16                        | Three Phase<br>Circuits                                       | Phasor and complex representation of three phase<br>supply, Phase sequence and polarity<br>Types of three-phase connections, Phase and line<br>quantities in three phase star and delta system,<br>Balanced and unbalanced load, neutral shift in<br>unbalanced load.<br>Three phase power, active, reactive and apparent<br>power in star and delta system                                                                                                     | R1,R2                          |                 |
| 4         | 13                        | Network<br>Reduction and<br>Principles of<br>Circuit Analysis | Source transformation, Star/delta and delta/star<br>transformation Mesh Analysis, Node Analysis                                                                                                                                                                                                                                                                                                                                                                 | R1,R2                          |                 |
| 5         | 16                        | Network<br>Theorems                                           | Superposition theorem. Thevenin's theorem.<br>Norton's theorem Maximum power transfer theorem<br>Reciprocity theorem Duality in electric circuits.                                                                                                                                                                                                                                                                                                              | R1,R2                          |                 |

#### REFERENCE RESOURCES

R1- Ashfaq Husain, Networks & Systems, Khanna Book Publishing, New Delhi

R2- Gupta, B.R; Singhal, Vandana;, Fundamentals of Electrical Network, S.Chand and Co

Signature of Teacher

Signature of H.O.D

## Govt. Polytechnic Hamirpur (H.P.) Lesson Planning (Theory)

Branch : ELECTRICAL ENGG Subject : ELECTRONICS DEVICES AND CIRCUITS Teacher: ANIL KUMAR JAGOTA Semester: 3rd Session: AUG-2024 Class Room: L1

| S.N<br>o. | No.<br>of<br>Lectu<br>res | Chapter/ Unit<br>Description      | Detail of Contents                                                                                                                                                                                                                                                                                                              | Refere<br>nce<br>Resour<br>ces | Re<br>mar<br>ks |
|-----------|---------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| 1         | 8                         | Semiconductor<br>and Diodes       | Definition, Extrinsic/Intrinsic, N-type & p-type PN<br>Junction Diode – Forward and Reverse Bias<br>Characteristics Zener Diode – Principle,<br>characteristics, construction, working Diode Rectifiers<br>– Half Wave and Full Wave Filters – C, LC and PI Filters                                                             | R1,R2                          |                 |
| 2         | 10                        | Bipolar<br>Junction<br>Transistor | NPN and PNP Transistor – Operation and<br>characteristics Common Base Configuration –<br>characteristics and working Common Emitter<br>Configuration – characteristics and working Common<br>Base Configuration – characteristics and working High<br>frequency model of BJT Classification of amplifiers,<br>negative feedback | R1,R2                          | 8               |
| 3         | 13                        | Field Effect<br>Transistors       | Working Principle, Classification MOSFET Small<br>Signal model N-Channel/ P-Channel MOSFETs –<br>characteristics, enhancement and depletion mode,<br>MOSFET as a Switch Common Source Amplifiers.<br>Uni-Junction Transistor – equivalent circuit and<br>operation                                                              | R1,R2                          |                 |
| 4         | 14                        | SCR DIAC &<br>TRIAC               | SCR – Construction, operation, working,<br>characteristics DIAC - Construction, operation,<br>working, characteristics TRIAC - Construction,<br>operation, working, characteristics SCR and MOSFET<br>as a Switch, DIAC as bidirectional switch Comparison<br>of SCR, DIAC, TRIAC, MOSFET                                       | R1,R2                          |                 |
| 5         | 11                        | Amplifiers and<br>Oscillators     | Feedback Amplifiers – Properties of negative<br>Feedback, impact of feedback on different<br>parameters Basic Feedback Amplifier Topologies:<br>Voltage Series, Voltage Shunt Current Series, Current<br>Shunt Oscillator – Basic Principles, Crystal Oscillator,<br>Non-linear/ Pulse Oscillator                               | R1,R2                          |                 |

#### REFERENCE RESOURCES

R1- Electronics Devices and Circuits by S. Salivahanan, N Suresh Kumar: Mc Graw Hill Education

R2- Electronics Devices and Circuits by Jacob Millman: Mc Graw Hill Education

131/06/24 Signature of Teacher

Signature of H.O.D.