Branch: Mech Engg' Subject Applied Chemistry Teacher: Shareshtha Devi Sem :1st Session : August-Dec.2024 Class Room

Feach	No. of Lectur		Chapter/Uni	Detail of content	Refere nce	Rema
	es		Description		Resour ces	rks
1	8	Week of I	Atomic Structure	1.1Fundamental particles of atoms : Electron, proton, neutron (Definitions) 1.2 Atomic Structure: Bohr's theory, successes and limitations(expression of energy and radius to be omitted), and Hydrogen spectrum explanation based on Bohr's model of atom, 1.3 Heisenberg uncertainty principle, Quantum numbers – orbital concept, Shapes of s, p orbitals, difference between orbit and orbital 1.4 Pauli's exclusion principle, Hund's rule of maximum multiplicity Aufbau rule, electronic configuration(Z=1 to 30).	R1,R28 R3	
2	8	5 th week of August &1st week of Sept	Chemical bonding and Solutions	2.1Concept of chemical bonding – cause of chemical bonding, types of bonds: ionic bonding (NaCl example) 2.2 Lewis concept of covalent bond (H2, F2, HF). Electronegativity, Difference between sigma and pie bond 2.3 Electron sea model of metallic bond. 2.4 Idea of solute, solvent and solution2.5 Methods to express the concentration of solution- molarity (M = mole per liter), molality, mass percentage (Numerical excluded).	R1,R2 R3	8
3	11	2nd ,3rd &4th Week of Sept.	Electro Chemistry and Corrosion	3.1 Electronic concept of oxidation, reduction and redox reactions. Definition of terms: electrolytes, non-electrolytes wi suitable examples, 3.2 Faradays laws of electrolysis and simple numerical problems. 3.3 Industrial application of Electrolysis – • Electrometallurgy • Electroplating • Electrolytic refining. 3.4 Application of redox reactions in electrochemical cells – • Primary cells – dry cell, • Secondary cell - commercially used lead acid storage battery. 3.5 Introduction to Corrosion of metals – definition, types of corrosion (electrochemical), H2 liberation and O2 absorption mechanis of electrochemical corrosion, 3.6 Internal corrosion preventive measures – Purification, alloying and heat treatment a	R1,R R3	2&
4	8	1st & 2nd week o Oct.	Engineerin f Materials	 4.1Natural occurrence of metals – minerals, ores of iron, aluminium and copper, gangue (matrix), flux, slag, metallurg, brief account of general principles of metallurgy(a).Crushing and grinding (b) Concentration of ore (Levigation, Froth flotation, Magnetic separation) (c) Extraction(Roasting and calcinations & smelting) (d) Refining (Electro refining, zone refining).4.2 Extraction of - iron from haematite ore using be furnace along with reactions. 4.3 Alloys – definition, purposs of alloying, ferrous alloys (Invar steel) and non-ferrous(Sim Brass & Bronze, Nichrome, Duralumin, Magnelium) with suitable examples, properties and applications 	ast es	

5	9	3rd & 4th Week of Oct.	Water	use of hard water in boiler (scale and Slugget Juditility dily	R1,R2&
6	8	1st & 2nd Week of Nov.	Fuels		R1,R2& R3
7	8	3rd &4th		7.1Function and characteristic properties of good lubricant, 7.2 classification with examples 7.3 Lubrication mechanism – hydrodynamic and boundary lubrication 7.4 Physical properties (viscosity and viscosity index,oiliness, flash and fire point, cloud and pour point only) and chemical properties (coke number, total acid number, saponification value) of lubricants.	R1,R2& R3
8	4	5th week of Nov.	Polymers	8.1 Monomer, homo and co polymers, degree of polymerization 8.2 simple reactions involved in preparation and their application of thermoplastics and thermosetting plastics (using Polythene, PVC, PS, PTFE, nylon-6,6 and Bakelite only 8.3 Vulcanization of rubber and properties of vulcanised rubber.	RI,RZQ

REFERENCE RESOURCES

REFERENCE	RESOURCES
R1	Text Book of Chemistry for Class XI& XII (Part-I, Part-II)
R2	Engineering Chemistry by Sunita Rattan

Agnihotri, Rajesh, Chemistry for Engineers R3

for Kin

Signature of Teacher (Sharestha)

HOD

Branch Civil Engg ' Subject Applied Chemistry Teacher Shareshtha Devi

Sem 1st Session August Dec 2024 Class Room

S.No.	No. of Lectur es	Week	Chapter/Un t Description	Detail of content	Refere nce Resour ces	Rem rks
1	8	3rd &4th week of August	Atomic Structure	1.1Fundamental particles of atoms - Electron, proton, neutron (Definitions) 1.2 Atomic Structure. Bohr's theory, successes and limitations(expression of energy and radius to be ornited), and Hydrogen spectrum explanation based on Bohr's model of atom, 1.3 Heisenberg uncertainty principle, Quantum numbers – orbital concept, Shapes of s, p orbitals, difference between orbit and orbital 1.4 Pauli's exclusion principle, Hund's rule of maximum multiplicity Aufbau rule, electronic configuration(Z=1 to 30).	R1 R28 R3	
2	8	5 th week of August &1st week of Sept	Chemical bonding and Solutions	2.1Concept of chemical bonding – cause of chemical bonding. types of bonds: ionic bonding (NaCl example) 2.2 Lewis concept of covalent bond (H2, F2, HF) Electronegativity. Difference between sigma and pie bond 2.3 Electron sea model of metallic bond. 2.4 Idea of solute, solvent and solution2.5 Methods to express the concentration of solution- molarity (M = mole per liter), molality, mass percentage (Numerical excluded).	P1 P28 R3	
3	11	Week of	Chemistry and Corrosion	3.1 Electronic concept of oxidation, reduction and redox reactions. Definition of terms: electrolytes, non-electrolytes with suitable examples, 3.2 Faradays laws of electrolysis and simple numerical problems. 3.3 Industrial application of Electrolysis – • Electrometallurgy • Electroplating • Electrolytic refining. 3.4 Application of redox reactions in electrochemical cells – • Primary cells – dry cell, • Secondary cell - commercially used lead acid storage battery 3.5 Introduction to Corrosion of metals – definition, types of corrosion (electrochemical), H2 liberation and O2 absorption mechanism of electrochemical corrosion, 3.6 Internal corrosion preventive measures – Purification, alloying and heat treatment a	R1.R28 R3	
1	8 w		Engineering Aaterials	4.1Natural occurrence of metals – minerals, ores of iron, aluminium and copper, gangue (matrix), flux, slag, metallurgy- brief account of general principles of metallurgy(a).Crushing and grinding (b) Concentration of ore (Levigation, Froth flotation, Magnetic separation) (c) Extraction(Roasting and calcinations & smelting) (d) Refining (Electro refining, zone refining).4.2 Extraction of - iron from haematite ore using blast furnace along with reactions. 4.3 Alloys – definition, purposes of alloying, ferrous alloys (Invar steel) and non-ferrous(Simple Brass & Bronze, Nichrome, Duralumin, Magnelium) with suitable examples, properties and applications		

5	9	3rd & 4th Week of Oct.	Water	in the sed sludge foaming and	R1,R2& R3
6	8	1st & 2nd Week of Nov.	Fuels	 6.1 Definition of fuel and combustion of fuel, classification of fuels 6.2 calorific values (HCV and LCV), calculation of HCV and LCV using Dulong's formula. Characteristics of good fuel 6.3 Petrol and diesel - fuel rating (octane and cetane numbers) 6.4 Chemical composition, calorific values and applications of LPG, CNG, water gas, producer gas and biogas. 	R1.R2& R3
7	8	3rd &4th	Lubrication	7.1Function and characteristic properties of good lubricant, 7.2 classification with examples 7.3 Lubrication mechanism – hydrodynamic and boundary lubrication 7.4 Physical properties (viscosity and viscosity index,oiliness, flash and fire point, cloud and pour point only) and chemical properties (coke number, total acid number, saponification value) of lubricants.	11,120
8	4	5th week of Nov.	Polymers	8.1 Monomer, homo and co polymers, degree of polymerization 8.2 simple reactions involved in preparation and their application of thermoplastics and thermosetting plastics (using Polythene, PVC, PS, PTFE, nylon-6,6 and Bakelite only 8.3 Vulcanization of rubber and properties of vulcanised rubber.	

REFERENC	ERESOURCES
D1	Text Book of Chemistry

	Le Cupita Pattan
D 2	Engineering Chemistry by Sunita Rattan
R2	Engineer S

Agnihotri, Rajesh, Chemistry for Engineers R3

Signature or teacher

fr lev

HOD

Branch Computer Engy, Subject Applied Chemistry Teacher Shareshtha Devi

Sem 1st Session August-Dec 2024 Class Room

				Class Room		
S.No.	No. d Lecti es	of ur Week	Chapter/U t • Description	Detail of content	Refere nce Resour ces	Rem. rks
1	8	3rd &4 week o Augus	of Atomic	1.1Fundamental particles of atoms : Electron, proton, neutron (Definitions) 1.2 Atomic Structure: Bohr's theory, successes and limitations(expression of energy and radius to be omitted), and Hydrogen spectrum explanation based on Bohr's model of atom, 1.3 Heisenberg uncertainty principle, Quantum numbers – orbital concept, Shapes of s, p orbitals, difference between orbit and orbital 1.4 Pauli's exclusion principle, Hund's rule of maximum multiplicity Aufbau rule, electronic configuration(Z=1 to 30).	R1 R28 R3	
2	8	5 th week o August &1st week of Sept	t Chemical bonding and	2.1Concept of chemical bonding – cause of chemical bonding. types of bonds: ionic bonding (NaCl example) 2.2 Lewis concept of covalent bond (H2, F2, HF). Electronegativity. Difference between sigma and pie bond 2.3 Electron sea model of metallic bond. 2.4 Idea of solute, solvent and solution2.5 Methods to express the concentration of solution- molarity (M = mole per liter), molality, mass percentage (Numerical excluded).	R1.R2& R3	
3	11	2nd ,3rd &4th Week of Sept.	Chemistry and Corrosion	3.1 Electronic concept of oxidation, reduction and redox reactions. Definition of terms: electrolytes, non-electrolytes with suitable examples, 3.2 Faradays laws of electrolysis and simple numerical problems. 3.3 Industrial application of Electrolysis – • Electrometallurgy • Electroplating • Electrolytic refining. 3.4 Application of redox reactions in electrochemical cells – • Primary cells – dry cell, • Secondary cell - commercially used lead acid storage battery. 3 5 Introduction to Corrosion of metals – definition, types of corrosion (electrochemical), H2 liberation and O2 absorption mechanism of electrochemical corrosion, 3.6 Internal corrosion preventive measures – Purification, alloying and heat treatment a	R1.R2& R3	
8	3 w		Engineering Materials fi G E E E	4.1Natural occurrence of metals – minerals, ores of iron, aluminium and copper, gangue (matrix), flux, slag, metallurgy – orief account of general principles of metallurgy(a).Crushing and grinding (b) Concentration of ore (Levigation, Froth lotation, Magnetic separation) (c) Extraction(Roasting and calcinations & smelting) (d) Refining (Electro refining, zone efining).4.2 Extraction of - iron from haematite ore using blast urnace along with reactions. 4.3 Alloys – definition, purposes of alloying, ferrous alloys (Invar steel) and non-ferrous(Simple Brass & Bronze, Nichrome, Duralumin, Magnelium) with uitable examples, properties and applications		

5	9	3rd & 4th Week of Oct	Water •	latite in a state of a	R1 R28 R3
6	8	1st & 2nd Week of Nov.	Fuels	fuels 6.2 calorific values (HCV and LCV), calculation of	R1 R2& R3
7	8	3rd &4th week of Nov.	Lubrication	7.1Function and characteristic properties of good lubricant, 7.2 classification with examples 7.3 Lubrication mechanism – hydrodynamic and boundary lubrication 7.4 Physical properties (viscosity and viscosity index,oiliness, flash and fire point, cloud and pour point only) and chemical properties (coke number, total acid number, saponification value) of lubricants.	R1.R2& R3
8	4	5th week of Nov.	Polymers	8.1 Monomer, homo and co polymers, degree of polymerization 8.2 simple reactions involved in preparation and their application of thermoplastics and thermosetting plastics (using Polythene, PVC, PS, PTFE, nylon-6.6 and Bakelite only 8.3 Vulcanization of rubber and properties of vulcanised rubber.	1.1.1.20

REFERENCE RESOURCES

	A DI VIA VII (Det Det)
	Taut Dook of Chemistry for (1985 XI& XII (Part-1, Part-1))
R1	Text Book of Chemistry for Class XI& XII (Part-I, Part-II)
13.1	

- R2 Engineering Chemistry by Sunita Rattan
- R3 Agnihotri, Rajesh, Chemistry for Engineers

Signature of Teacher Sharishtha)

for lon-

HOD

Branch: Enformation Technology Subject: Applied Chemistry Teacher: Shareshtha Devi

Sem 1st Session August-Dec 2024

Class Room

S.No.	No. of Lectur es	Week	Chapter/Un t • Description	Detail of content	Refere nce Resour ces	Rem; rks
1	8	3rd &4th week of August	Atomic	1.1Fundamental particles of atoms : Electron, proton, neutron (Definitions) 1.2 Atomic Structure: Bohr's theory, successes and limitations(expression of energy and radius to be omitted), and Hydrogen spectrum explanation based on Bohr's model of atom, 1.3 Heisenberg uncertainty principle, Quantum numbers – orbital concept, Shapes of s, p orbitals, difference between orbit and orbital 1.4 Pauli's exclusion principle, Hund's rule of maximum multiplicity Aufbau rule, electronic configuration(Z=1 to 30).	R1 R2& R3	
2	8	5 th week of August &1st week of Sept	Chemical bonding and Solutions	2.1Concept of chemical bonding – cause of chemical bonding. types of bonds: ionic bonding (NaCl example) 2.2 Lewis concept of covalent bond (H2, F2, HF) Electronegativity. Difference between sigma and pie bond 2.3 Electron sea model of metallic bond. 2.4 Idea of solute, solvent and solution2.5 Methods to express the concentration of solution- molarity (M = mole per liter), molality, mass percentage (Numerical excluded).	R1.R2& R3	
3	11	Neek of	Chemistry and Corrosion	3.1 Electronic concept of oxidation, reduction and redox reactions. Definition of terms: electrolytes, non-electrolytes with suitable examples, 3.2 Faradays laws of electrolysis and simple numerical problems. 3.3 Industrial application of Electrolysis – • Electrometallurgy • Electroplating • Electrolytic refining 3.4 Application of redox reactions in electrochemical cells – • Primary cells – dry cell, • Secondary cell - commercially used lead acid storage battery. 3.5 Introduction to Corrosion of metals – definition, types of corrosion (electrochemical), H2 liberation and O2 absorption mechanism of electrochemical corrosion, 3.6 Internal corrosion preventive measures – Purification, alloying and heat treatment a	R1.R2& R3	
4	8 w		ingineering Materials f G E	4.1Natural occurrence of metals – minerals, ores of iron, aluminium and copper, gangue (matrix), flux. slag, metallurgy – orief account of general principles of metallurgy(a).Crushing and grinding (b) Concentration of ore (Levigation, Froth lotation, Magnetic separation) (c) Extraction(Roasting and calcinations & smelting) (d) Refining (Electro refining, zone efining).4.2 Extraction of - iron from haematite ore using blast urnace along with reactions. 4.3 Alloys – definition, purposes f alloying, ferrous alloys (Invar steel) and non-ferrous(Simple Brass & Bronze, Nichrome, Duralumin, Magnelium) with uitable examples, properties and applications		

5	9	3rd & 4th Week of Oct.	Water	in the set and sludge foaming and	R1.R28 R3
6	8	1st & 2nd Week of Nov.	Fuels	fuels 6.2 caloritic values (HCV and LCV), conoridation	R1 R28 R3
7	8	3rd &4th	Lubrication	7.1Function and characteristic properties of good lubricant, 7.2 classification with examples 7.3 Lubrication mechanism – hydrodynamic and boundary lubrication 7.4 Physical properties (viscosity and viscosity index,oiliness, flash and fire point, cloud and pour point only) and chemical properties (coke number, total acid number, saponification value) of lubricants.	R1.R2& R3
2	4	5th week of Nov.	Polymers	 8.1 Monomer, homo and co polymers, degree of polymerization 8.2 simple reactions involved in preparation and their application of thermoplastics and thermosetting plastics (using Polythene, PVC, PS, PTFE, nylon-6,6 and Bakelite only) 8.3 Vulcanization of rubber and properties of vulcanised rubber. 	

REFERENCE RESOURCES

REFERENC	E RESOURCES	(DI A VIR VII (Part-I Part-II)
D1	Text Book of Chemis	try for Class XI& XII (Part-I, Part-II)

- R1 Engineering Chemistry by Sunita Rattan R2
- Agnihotri, Rajesh, Chemistry for Engineers R3

Signature of Teacher thereighther)

for long

HOD