Govt. Polytechnic Hamirpur (H.P.) LecturePlaning (theory)

Branch: **Computer Engg**

Subject: Data Structures & Algorithms

Teacher: Sunil Kumar

Semester: 4TH

Session : Feb-June, 2024

Classroom : CB LH-02/Smart Class Room

Sr. No	No. of Lectures	Chapter/Unit Description	Detail of Contents	Reference/ Resource	Remarks
1	1-12	Unit-1: Introduction	Algorithms-Definition, Characteristics, Efficiency, No- tations - Asymptotic, Big-Oh, Omega, Theta notation; Data Types, Data Structures - Characteristics, Types - Linear, Non-linear, General Operations, Efficiency;	R1,R2,R3	
2	13-28	Unit 2: Arrays, Structures and Pointers	Arrays, One-Dimensional and Multi-Dimensional Ar- rays, One-Dimensional Arrays-Memory Representa- tion,Traversal, Insertion and Deletion, Sorting and Searching; Two-Dimensional Arrays-Memory Repre- sentation,Implement Matrices using Two-Dimensional Arrays, Matrix Operations-Addition, Subtraction, Multiplication, Transpose; Structure-Accessing struc- ture members using (.) and (->) operators, self- referencing structures, Pointers-Dynamic Memory Al- location using malloc(), calloc(),free() and realloc(), Manipulate Arrays using Pointers	R1,R2,R3	
3	29-40	Unit 3: Sorting and Searching	Searching Techniques - Linear Search, Binary Search; Sorting Techniques - Selection Sort, Insertion Sort, Bubble Sort, Quick Sort, Merge Sort; Efficiencies of Sorting Algorithms.	R1,R2,R3	
4	41-52	Unit 4: Linear Data Structures	Linked Lists - Representation, Advantages, Disadvan- tages, Implementation, Operations; Doubly Linked List, Stacks, Stack Operations - Push, Pop; Implemen- tation of Stack using Arrays and Linked List; Queues, Queue Operations, Implementation of Queue using Arrays and Linked List.	R1,R2,R3	
5	53-64	Unit-5 : Non- Linear Data Structures	Trees, Tree Terminology - Node, Root, Parent, Chil- dren, Sibling, Edge, Leaves; Binary Tree, Binary Tree Representation, Binary Tree Traversal, Binary Search Tree, Graphs, Graph Terminology, Directed Graphs, Weighted Graphs, Graph Implementation using Adja- cency Matrix and Adjacency List.	R1,R2,R3	

References:

R1 : Self made Power Point Presentation (animated)

- R2 : Data Structures and Algorithms: Concepts, Techniques and Applications, G. A. V. Pai, McGraw-Hill Education, In
- R3: Lab Mannual, Data Structures, R.S. Salaria, Khanna Book Publishing, New Delhi

Course outcome :

CO-1. Understand the basic terms associated with data structures and algorithms.

CO-2. Select appropriate data structures to efficiently store and process data

- CO-3. Write efficient algorithms for given problems
- CO-4. Analyze the performance of various general algorithms.

27/01/2014

Signature of teacher with date

<u>Govt. Polytechnic Hamirpur (H.P.)</u> Lecture Planing (Practical)

Branch: Computer Engg

Subject: Data Structures & Algorithms

Teacher: Sunil Kumar

Semester: 4TH Session : Feb-June, 2024 Lab Name : OSL

		Aim of Practical		Array Sec.
Sr. No	No. of Practical Hours planned			Remarks
1	04	To insert and delete elements at specified location in an array.	R1,R2,R3	
2	04	To search an element in an array using linear search.	R1,R2,R3	
3	04	To search an element in a sorted array using binary search	R1,R2,R3	
4	04	To sort elements of a given array in ascending order using se- lection sort method.	R1,R2,R3	
5	04	To sort elements of a given array in ascending order using bubble sort method	R1,R2,R3	
6	04	To sort elements of a given array in ascending order using quick sort method	R1,R2,R3	
7	04	To sort elements of a given array in descending order using insertion sort technique	R1,R2,R3	la la
8	04	To sort elements of a given array in descending order using merge sort technique.	R1,R2,R3	
9	04	To implement a stack and demonstrate push, pop and peek operations on it	R1,R2,R3	
10	04	To implement a queue and demonstrate various operations on it	R1,R2,R3	
11	04	To implement a circular-queue and demonstrate various oper- ations on it.	R1,R2,R3	
12	06	To implement a linked list and demonstrate insertion, deletion and traversing operations on it	R1,R2,R3	
13	04	To implement a doubly linked list and demonstrate insertion, deletion and traversing operations.	R1,R2,R3	
14	04	To implement a tree and perform in-order, pre-order and post- order traversals.	R1,R2,R3	
15	06	To implement a binary search tree and perform insertion, deletion and search operations on it.	R1,R2,R3	

References:

R1 : Self made Power Point Presentation (animated)

R2 : Data Structures and Algorithms: Concepts, Techniques and Applications, G. A. V. Pai, McGraw-Hill Education, In

R3: Lab Mannual, Data Structures, R.S. Salaria, Khanna Book Publishing, New Delhi

27/01/2024

Signature of teacher with date

Jan HOD